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Sufficiently smooth n-dimensional dynamical systems with odd fight-hand sides are considered in which the simplest form of 
symmetry is obtained. A~L explicit expression for the first non-zero Lyapunov coefficient is obtained and invariant Poinear6 
manifolds are constructed for the ease when the linearization matrix has a single non-zero eigenvalue and the real parts of the 
remaining eigenvalues are negative. A geometric illustration of loss of stability associated with creation bifurcation or bifurcation 
in the merge Of steady states at a critical value of an essential parameter is presented for two-dimensional systems. © 1996 Elsevier 
Science Ltd. All rights reserved. 

Explicit expressions folr the first Lyapunov quantity in the case of two- and four-dimensional dynamical systems 
with quadratic non-linearities were obtained for the first time in [1]. Here, the question of stability in the critical 
case was associated wi.th the nature of the safety of the boundary of the stability domain in the space of the 
parameters. The papex by Fishman [2] is also concerned with the latter problem. The local qualitative picture of 
the behaviour of dynamical systems close to the critical values of the parameters is known [4-11] in principle not 
only in classical cases [13] of a single non-zero root or a pair of pure imaginary roots of the characteristic equation 
but also in more complex cases. Results of a constructive character are also of significance from an applied point 
of view for calculating the governing quantities and their popularity is proportional to the simplicity of the 
mathematical apparatns required. 

The systems 

x =f(x,x)) ,  x , f ~ R  n, a;~Rl+ (1) 

are considered below which axe invariant under the substitution (t, x) ~ (t, -x), that is, systems with an odd right- 
hand side with respect to the state variable x: f(-x,  x)) = - f ( x ,  ~) .  I n  such systems the point x = 0 is necessarily the 
equilibrium state. Phy,,;ically, this means that the system is indifferent to the direction of a displacement from the 
state x = 0. Duffing and Van der Pol oscillators as well as many means of transportation (cars, aircraft and ships) 
may serve as examples where the symmetry of the differential equations of the course motion means that left and 
right turns are equally possible. The principal parts of the non-linearities of system (1) in the neighbourhood of 
the state x - 0 are of the third order 

n 
xi = Y_. a i jx j  + Pi(xl  ..... x, ,)  

j=l 

aklmXk XlX, n + O, ,X ,  3 l ~ 
k=l l=l ra=l 

~(i) _ ~ ( i )  _ ~(i) 
aij = const, "*klm -- "kml - L'mkl -- const (i = I,...,n) 

(2) 

We shall denote the eigenvalues of the matrixA = II a//II~'by ~'1 and byAij the cofactor of the element -. Let 
the point O(0 . . . . .  0) e / ~  be the precise state of equiliorium for which ~-1 = 0, Re Zp <0 (p = 2 . . . .  , a~  We 
know that the linear part of system (2) admits of a linear integral with constant coefficients and we shall take it as 
one of the unknown t)anctions x = a lx l  + • • • + anxn. If the variables xi are numbered in such a way that A,,, ~ 0, 
then a ,  ¢ 0 andx  can be adopted instead o f x n .  

Let us put a i = ain .  Equations (2) become 

x" = X ( x .  x t  . . . . .  x . _ l  ) 
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n - I  

X.~. = ~,  b~.rX r + bi  x + ~. ( x i . . . . .  Xn I, xn ( x ,  x i . . . . . .  rn-I  ) ) • . ,. - 
r= l  (3) 

X ( x , x  I . . . . .  xn_  I ) = ~ a iP i ( x l  . . . . .  xn_  I ,Xn ( x , x  I . . . . .  Xn_ I )) 
i=1 

n - I  1 X n ( X , X  I . . . . .  Xn_ l )  = x -  E a s x s  a~ I 

bsr=a~r-brbs, b.,=axna~ I (s=l  ..... n - l )  

We equate the right-hand sides of the non-critical equations to zero and seek the solution of the corresponding 
system of finite equations in the formxr = ur(x), where u~(0) = 0. The functions u,(x) are expanded in power series 
which converge for sufficiently small x. Such functions exist [3, 12]. Confining ourselves to quantities of the first 
order, we find 

U r = l ~ r X +  .. . .  O r = A n r  a i A n i  ( r =  l . . . . .  n - l )  

In order to judge the stability of the zeroth solution of system (2), it is necessary to construct the expression 

X ( x , U  i (X) ..... Un_ I (x)) = gx 3 +o(x 3 ) 

From (3), we have 

x n(x,u I(x) ..... u,_i(x))=ci#x+... 

- a rOr  a~i  
r= l  

Hence 

i :1  k : l  / :1  m : l  

If g < 0, the unperturbed motion is asymptotically stable [3] and the hypersurface An = 0 is a safe [1] boundary 
of the domain of stability in the space of the parameters. When g > 0, the unperturbed motion is unstable and 
the hypersurfaceAn = 0 is a dangerous boundary in the direction dAn/du < 0 and the separation of a representative 
point takes place in it. Here, An = I A I is the free term of the characteristic equation and ~ is a characteristic 
parameter of the system such that u X u+ J A n  -~ 0 

We will now consider the case of  systems, the linearpart of  which is reduced to a basis of  eigenvectors. Let the spectrum 
of the matrixA be known and let the matrixA change in the following way when the parameter a) is changed: if~l 
< ~. then ~1 < 0 . . . . .  7~ < 0, L~+l = Iq + it% ~+2 = lq - ia)l . . . . .  ~-1 = i~ + it% kn = leq - i%, q = 1/2(n - 
s), ICk < 0; if, however, ~) > u+ then ~.1 > 0, the form of the eigenvalues Lz,. • . ,  ~ is as before. Next, let aJ =u+, 
that is, 7,1 = 0. We reduce system (2) to the form (summation over k, ! and m) 

~l = ~  (I) ,~ , , , .~k~. ,  +... (4) 

Akl~k{l~,,,  +... 

= +Z A , . A , ~ t ~ , , ,  ... 

• A(s+l)l: I: I: + 
~'l.l+l =l<lF'ls+l - ~ i ~ s + 2  " i"X :'kin, "ik~l~in, "'" 

i s + 2 )  + ~.,+2 =coA,.+j +'<~.,.+2 + Z  A ~ . ,  ~ , ~ A . ,  ... 

• (n-l) 
[n- I  =Kq~n-I --(X)q[n + Z Akl m [k~l~, 'n + , ' '  

(h i  + ~,, = %~, , - I  +'<q~,, + Z/ikl,,,~,~l~,,, ... 
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whereAtd,, (/) = A~nt(i) -- ~ta.~(i) Since, the critical variable ~1 does not occur linearly in the equations for the non-critical 
variables ~2 . . . . .  ~ ,  system (4) satisfies a well-known theorem [ 12, pp. 93, 94]. The first non-zero Lyapunov coefficient 
is therefore g = A~])I. By finding the invariant manifold of system (4) in the form ~ = ~(~) ,  ~(~t) -= A~I + 
B~{] + . . .  it can be sho, ma that, in order to find it, it is necessary to equate the right-hand sides of the non-critical 
equations to zero. We obtain 

~ v = - - - - ~ v  ,,i+... (V=2 ..... s) 

= _  

-m,l ~, ~,~+... 

A ( n - l ) •  x a(n),.,. 
III ~ q + " l l l ~ q  ~ + . . .  

~n- I  = -  2 +0)2 q 
~q 

A(n-I) t^  a ( n ) ~  
~. = i , .  "°q-ro l l - ' t2  2 ~,~+"' 

Xq + (Dq 

The behaviour of the one-dimensional system to which the problem of the stability of the zeroth solution of the 
n-dimensional system (4) is reduced is described by the equation 

A(1)~3 ~i = ,,,~, +... (5) 

In the case of two-dimensional systems it is possible to write out all the intermediate transformations in explicit 
form and to give a clear geometric illustration of the behaviour of the system. The invariant manifold is 

~2 a (2 )a -1n3  = -  ,'H ,'~2 ',l +... (6) 

Substituting Eq. (6) into the first equation of the system 

2 2 2 
= a , , m g , g , g .  + o(Igl 3) (7) 

k=l 1=1 m=l 

2 2 2 

k=l /=1 m=l 

we obtain Eq. (5). In a certain finite neighbourhood of the origin of coordinates for the phase velocity vector of 
(1) . 2  system (7) the approximation V (Am~ 1, X2, ~2} is permissible. Starting from this, it is possible to construct the 

phase fluxes and the cubic parabola (6) attracting these fluxes. The number of possible situations is equal to four 
and they correspond to the situationsA~l~ ~ 0,A~2~ X 0. 

In Fig. 1, the invari~mt manifold (6) is represented by the dot--dash curve andA~ t > 0 in Fig. l(a) and (b),At2] 
< 0 in Fig. l(c) and (d),A~{ < 0 in Fig. l(a) and (c) andAtl t > 0 in Fig. l(b) and (d). 

The phase fluxes are attracted by the manifold (6) and are then directed along it to the origin of coordinates or 
even depart from the ]tatter. In the cases of Fig. l(a) and (c), the origin of coordinates is a stable node of the non- 
linear system (7) while, in Fig. l(b) and (c), it is a saddle, and curve (6) is a separatrix consisting of whiskers which 
emerge from the origin of coordinates. 

Since Z1 < 0, X2 < 0 when u < u+, the origin of coordinates of the phase plane xxx2 is a stable node and its 
Poincar6 indexj = 1. When u > u+, we have Xl > 0, X2 < 0,j = -1, that is, the point (0, 0) is a saddle. 

A change in the sign of the Poincar6 index of the origin of coordinates as a singular point of Eqs (2) when 
n = 2 or the equations 

2 2 2 

k=l l=l ra=l 

can be explained either by a creation bifurcation or a bifurcation of the junction of singular points at the origin 
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of coordinates when the parameter ~ is changed. The first case is illustrated in Fig. 2 and the second case in 
Fig. 3. 

In the case of creation bifurcation (generation) when u < ~+, there is only one singular point, the point (0, 0) 
in a finite neighbourhood of the origin of coordinates of the phase plane. When ~ = ~÷ two new singular points 
are created at the point O such that, when u > ~+, apart from the singular point O, there are singular points N1 
and N2 which are stable nodes. The subsequent perturbations for ~ > ~+ are bounded and the boundaryA2 = 0 
of the stability domain in the space of the parameters of system (2) is safe. 

In the case of merged bifurcation (annihilation) when v < ~+, there is a pair of saddle points $1 and Sz 
(Fig. 3), arranged symmetrically about the point O, which are stable nodes (in particular, a property of dynamical 
systems with symmetry is manifested in this). When the parameter ~ increases, the points $1 and $2 approach the 
origin of coordinates, merging with it when ~ = u+. In this case, the boundaryA2 = 0 is unsafe and separation of 
the representative point occurs in it. 

The configuration of the curves in Figs 2 and 3 corresponds to a problem on the plane-parallel motion of an 
automobile within the framework of axiomatics [13] where u is the longitudinal velocity of the centre of mass, 
xt = to is the angular velocity of yaw and x2 = u is the lateral velocity of the centre of mass [14]. These curves 
synthesize the mechanism of the loss of stability of rectilinear motion (to which the point (0, 0) of the xrr2 plane 
corresponds) of an automobile with an excessive ability to tilt, which has been described in [15]. 

I wish to thank the referee for discussing the subject and content of this paper. 
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